Why is Inflectional Morphology Difficult to Borrow? - Distributing and Lexicalizing Plural Allomorphy in Pennsylvania Dutch

SyntaxLab @ Cambridge

Mike Putnam
Penn State University
March 16, 2022
The general consensus in the extant contact linguistics literature (from various theoretical persuasions) is that inflectional morphology is difficult to borrow (Thomason, 2001; Matras, 2009, 2014; Arkadiev & Amiridze, 2014)

Inflectional morphology is applied at the sentence level, not at the word level, and so within the framework of the utterance of the recipient language [...] This is the major difference between derivational and inflectional morphology, and the main reason why the borrowing of inflectional morphology is rare compared to that of derivational morphology. (Matras, 2009: 212)
PD plural allomorphy

(1) a. Kissi → Kissi-s ‘pillow/pillows’
b. Gall → Galli-s ‘horse/horsie-pl’
c. Schnuppi → Schnuppi-s ‘hankie/hankies’
d. Hammer → Hammer-s ‘hammer/hammers’

(2) a. Mick → Mick-e ‘fly/flies’
b. Schtick → Schtick-er ‘piece/pieces’
c. Haus → Heis-er ‘house/houses’
d. Hand → Hend ‘hand/hands’
e. Frein → Frein ‘friend/friends’
Research questions

- **RQ₁**: How does this general restriction inform us about the underlying nature of an ‘integrated’ bi/multilingual mental lexicon (Kroll & Dussias, 2014; Putnam, Carlson, & Reitter, 2018; López, 2020)?
- **RQ₂**: Are there any *representational* reasons why the borrowing of inflectional morphology is so difficult in contact situations?
- **RQ₃**: What sorts of insights might the contact situation surrounding Pennsylvania Dutch (PD) offer us in better understanding the limits of borrowing of inflectional morphology?
I approach this puzzle from the perspective of a **late-insertion, realizational** model of the syntax-lexicon interface (Borer 2005a,b,2013; Marantz, 2013; Baunaz et al., 2018)

Key architectural desiderata:
- One Feature-One Head (OFOH) Architecture
- Distributed approach to NUM(ber) (Wiltschko, 2021)
- The need for both C-I-motivated features *and* ‘purely’ morphological F-features

Key claim: Our analysis of syntactic objects as *(lexical) spans* illustrates how the underlying representation of *{s}* is unique in both English and Penn Dutch

Collaborative (ongoing!) research with Rose Fisher (PSU), David Natvig (U Stavanger), Erin Pretorius (UWC), & Katharina Schuhmann (Uni-Oldenburg)
What is *Pennsylvania Dutch*?

- PD is a language that has "outgrown its name" (Keiser, 2012:1).
 - +300 years spoken on North American soil (and now in South America!)
 - Started in SE Pennsylvania, now spoken throughout the Midwest and Ontario (and other areas!)
 - $\approx 400,000$ L1 speakers of PD today
 - Predominantly spoken as the L1 of the Old Order Amish (OOA) and other conservative Mennonite groups
 - NB: For an easily accessible history of the language, see Louden (2016)
- PD ain’t going nowhere anytime soon...
 - The Amish population doubles in every generation (average family size 8.6 members)
 - If they keep this pace, by 2315 there will be more Amish in the US than any other ethnic or religious group!
The language contact situation surrounding *Penn Dutch*

- There are no exclusively monolingual speakers of PD
- The OOA exist in a state of **diglossic bilingualism** (Grosjean, 2001, 2008)
 - Although the vast majority of OOA are sequential bilinguals (acquiring PD first), English is omnipresent in their daily lives
 - Bifurcation of modes and sociolinguistic domains:
 - **PD:** home, family, church, local community
 - **English:** non-Amish neighbors, work (outside of the home), ‘worldly’ topics
- Thus, PD speakers are "deep bilinguals" (to quote López, 2020)
 - It makes little sense to attempt to distinguish between *loanwords* and *borrowings* (a la Poplack (2018) and related work) in PD
 - Their lexicon is truly **hybrid**
- **Assessment:** PD represents an ideal language dyad and sustained contact situation to learn more about (the lack of) borrowing of inflectional morphology
Pennsylvania Dutch Plural Forms

<table>
<thead>
<tr>
<th>{e}</th>
<th>Katz</th>
<th>Katz-e</th>
<th>'cat-pl'</th>
</tr>
</thead>
<tbody>
<tr>
<td>{r}</td>
<td>Hemm</td>
<td>Hemm-r</td>
<td>'shirt-pl'</td>
</tr>
<tr>
<td>{n}</td>
<td>Leffli</td>
<td>Leffli-n</td>
<td>'spoon-pl'</td>
</tr>
<tr>
<td>{s}</td>
<td>Baller</td>
<td>Baller-s</td>
<td>'ball-pl'</td>
</tr>
<tr>
<td>{∅}</td>
<td>Frein</td>
<td>Frein-∅</td>
<td>'friend-pl'</td>
</tr>
<tr>
<td>umlaut</td>
<td>Hand</td>
<td>Hend</td>
<td>'hand-pl'</td>
</tr>
<tr>
<td>umlaut-{r}</td>
<td>Haus</td>
<td>Heis-r</td>
<td>'house-pl'</td>
</tr>
</tbody>
</table>
Table 1. Overview of German nominal plural exponency (in orthographic form) for all plural exponents except -s. All examples show nominal plural with a word-final trochee (marked as \[\text{syllable1}.\text{syllable2}\]), indicating the prosodic form: (...)\[\sigma \, \sigma\]^\#, independent of the corresponding nominal singular form and the specific plural exponent used.

<table>
<thead>
<tr>
<th>Singular: (...)[\sigma , \sigma]^#</th>
<th>Plural: (...)[\sigma , \sigma]^#</th>
<th>Singular: (...)[\sigma]^#</th>
<th>Plural: (...)[\sigma , \sigma]^#</th>
</tr>
</thead>
<tbody>
<tr>
<td>['\text{Tas}.\text{se}+n] 'cups'</td>
<td>['Frau.+en] 'women'</td>
<td>['Stif.+e] 'pens'</td>
<td>['\text{Kin}.d+er] 'children'</td>
</tr>
<tr>
<td>['\text{Win}.\text{del}+n] 'diapers'</td>
<td>['\text{Stif}.t+e] 'pens'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>['Wä.gen+\text{Ø}] 'cars'</td>
<td>['\text{Kin}.d+er] 'children'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vio['\text{ti}.\text{ne}+n] 'violins'</td>
<td>Bäcke['\text{rei}.+en] 'bakeries'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apo['\text{the}.\text{ke}+n] 'pharmacies'</td>
<td>Pro['\text{ban}.d+en] 'subjects'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Com['\text{pu}.\text{ter}+\text{Ø}] 'computers'</td>
<td>Dia['\text{gram}.m+e] 'diagrams'</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(from Schuhmann & Putnam, 2021: 4)

Preliminary results from Fisher et al. (2022):

- AJT & Wug-text with 10 native-PD speakers
- Trochaic template still present (to a much lesser degree) in PD plurals, except for:
 - s-plurals
 - zero plurals
 - umlauted-stems
Let’s focus on 4 different classes of PD-nominal plurals (not based on step shape, but rather on suffix/exponent selection):

- Umlauting & zero plurals
- Plurals ending in \{r\}
- \{s\}-plurals
- \{e\}-plurals
Potential syllabification patterns in consonant-liquid coda clusters

<table>
<thead>
<tr>
<th>Root</th>
<th>Singular</th>
<th>Plural</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>* /messer/</td>
<td>messer</td>
<td>messr-e</td>
<td>*Syncope</td>
</tr>
<tr>
<td>* /hiwwel/</td>
<td>hiwwel</td>
<td>hiwwl-e</td>
<td></td>
</tr>
<tr>
<td>/messr/</td>
<td>messr</td>
<td>messr-e</td>
<td>Liquid syllabification</td>
</tr>
<tr>
<td>/hiwwl/</td>
<td>hiwwl</td>
<td>hiwwl-e</td>
<td></td>
</tr>
<tr>
<td>/hemm/</td>
<td>hemm</td>
<td>hemm.r</td>
<td></td>
</tr>
</tbody>
</table>
Pennsylvania Dutch plural exponent classes

<table>
<thead>
<tr>
<th>Exponent</th>
<th>√root</th>
<th>Singular</th>
<th>Plural</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>{s}</td>
<td>√Baller</td>
<td>Baller</td>
<td>Ballers</td>
<td>ball(pl)</td>
</tr>
<tr>
<td></td>
<td>√Frog</td>
<td>Frog</td>
<td>Frogs</td>
<td>frog(pl)</td>
</tr>
<tr>
<td>{e}</td>
<td>√Katz</td>
<td>Katz</td>
<td>Katze</td>
<td>cat(pl)</td>
</tr>
<tr>
<td></td>
<td>√Hiwwl</td>
<td>Hiwwel</td>
<td>Hiwwle</td>
<td>hill(pl)</td>
</tr>
<tr>
<td>{r}</td>
<td>√Hemm</td>
<td>Hemm</td>
<td>Hemmer</td>
<td>shirt(pl)</td>
</tr>
<tr>
<td></td>
<td>√Haus</td>
<td>Haus</td>
<td>Heiser</td>
<td>house(pl)</td>
</tr>
<tr>
<td>{∅}</td>
<td>√Frein</td>
<td>Frein</td>
<td>Frein</td>
<td>friend(pl)</td>
</tr>
<tr>
<td></td>
<td>√Hand</td>
<td>Hand</td>
<td>Hend</td>
<td>hand(pl)</td>
</tr>
</tbody>
</table>
Architectural assumptions: One Feature-One Head (OFOH)

- Feature inventories may differ cross-linguistically due to their primary role in representing language-specific contrasts (Cowper & Hall, 2014; Hall, 2020)

- Contrastivist hypothesis (Cowper & Hall, 2014; Hall, 2007)

- C-I & F-feature
 - F-features are not phonological in nature!

- (Morpho)syntactic features mediate between exponents and structure.
 - Feature trees that are specified on exponents (L(exical)-spans) are matched against feature trees that are generated in syntax (S(yntactic)-spans)

- The challenging domain of bilingualism:
 - New possible asymmetric form-to-feature relationships among exponents
 - Exponents may map to new syntactic configurations (S-spans) due to (sustained) contact
The distributed syntax of NUM(ber) (Wiltschko, 2021)

```
DP → anchoring
   /\    
D   #P → counting
   /\    
#    CIP → dividing
   /\    
Cl   nP → classifying
   /\    
n   \√   
```

Mike Putnam (Penn State University) SyntaxLab @ Cambridge March 16, 2022 14 / 34
Syntactic representation for PD & English plural L-spans

PD plurals

F₂
 / \
F₁
 / \
 # √

English plurals

F₁
 / \
 # √

Mike Putnam (Penn State University) SyntaxLab @ Cambridge March 16, 2022 15 / 34
(3) **Span:** An n-tuple of heads $< X_n, ..., X_1 >$ is a span in a syntactic structure S, iff $X_{n-1}P$ is the complement of X_n in S.
(Blix 2021, 7)

(4) **Exhaustive Lexicalization Principle:** Every syntactic feature must be lexicalized.
(Fábregas 2007, 167)

(5) **Superset Principle:** In case a syntactic span does not have an identical match in the lexical repertoire, select an exponent which contains a superset of the features present in the syntactic span.
(adapted from Fábregas & Putnam 2020, 40)
(6) **Subsect S-span:** In case no exponent contains a superset of the features present in the S-span,

a. select the exponent whose L-span contains as many features present in the S-span as possible, then

b. apply (a) until the Exhaustive Lexicalization Principle is satisfied.

(7) **Insertion Heuristic:** When an S-span is spelled out, exponents are inserted according to (a). If (a) cannot obtain, exponents are inserted according to (b). If (b) cannot obtain, then (c) applies:

a. Superset Principle
b. Subsect S-span
c. No insertion
Exponents competing for insertion

<table>
<thead>
<tr>
<th>S-span</th>
<th>L-span (exponents)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Sa) [F_4] [F_3] √A</td>
<td>(La) [F_4] [F_3] [F_2] √A</td>
</tr>
<tr>
<td>(Sb) [F_4] [F_3] √B</td>
<td>(Lb) [F_4] [F_3] [F_2] [F_1] √A</td>
</tr>
<tr>
<td></td>
<td>(Lc) [√B]</td>
</tr>
<tr>
<td></td>
<td>(Ld) [F_4] [F_3]</td>
</tr>
</tbody>
</table>
Spellout: English regular & irregular plurals

<table>
<thead>
<tr>
<th>S-span</th>
<th>L-span (exponents)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td></td>
</tr>
<tr>
<td>#P</td>
<td>car ←</td>
</tr>
<tr>
<td>#</td>
<td>√car</td>
</tr>
<tr>
<td>-s</td>
<td>mouse ←</td>
</tr>
<tr>
<td></td>
<td>√mouse</td>
</tr>
<tr>
<td>mice</td>
<td>#</td>
</tr>
<tr>
<td></td>
<td>√mouse</td>
</tr>
</tbody>
</table>
Tree representations for English regular & irregular plurals

(8) #P
 #
 # #√car
 | | |
 {s} car

(9) #P
 # #√mouse
 | |
 | mice
S-span representing PD distributed plurality

\[
\begin{array}{c}
F_2 \\
F_1 \\
\# \quad \sqrt{-} \\
\end{array}
\]
PD ‘zero’ & umlaut plurals

<table>
<thead>
<tr>
<th>S-span</th>
<th>L-span (exponents)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td></td>
</tr>
<tr>
<td>F₂</td>
<td>Hand ←</td>
</tr>
<tr>
<td>F₁</td>
<td>√Hand</td>
</tr>
<tr>
<td>#</td>
<td>Hend ←</td>
</tr>
<tr>
<td>√</td>
<td>F₂</td>
</tr>
<tr>
<td></td>
<td>F₁</td>
</tr>
<tr>
<td></td>
<td>#</td>
</tr>
<tr>
<td></td>
<td>√Hand</td>
</tr>
<tr>
<td></td>
<td>Frein ←</td>
</tr>
<tr>
<td></td>
<td>F₂</td>
</tr>
<tr>
<td></td>
<td>F₁</td>
</tr>
<tr>
<td></td>
<td>#</td>
</tr>
<tr>
<td></td>
<td>√Frein</td>
</tr>
</tbody>
</table>
L-spans

(10)

\[
\begin{array}{c}
\text{F}_2 \\
\text{F}_1 \\
\# \\
\text{Hend}
\end{array}
\]

(11)

\[
\begin{array}{c}
\text{Hand} \\
\sqrt{\text{Hand}} \\
\text{Hand}
\end{array}
\]
Spellout of PD \{s\}- plurals

\[
\begin{array}{|c|c|}
\hline
\text{S-span} & \text{L-span (exponents)} \\
\hline
(S) & \text{Baller} \leftrightarrow \\
\hline
\end{array}
\]

\[
\begin{array}{c}
\sqrt{\text{Baller}} \\
\hline
\end{array}
\]

\[
\begin{array}{c}
\text{Baller} \\
\hline
\end{array}
\]

\[
\begin{array}{c}
\sqrt{\text{Baller}} \\
\hline
\end{array}
\]

\[
\begin{array}{c}
\text{Baller} \\
\hline
\end{array}
\]

\[
\begin{array}{c}
\sqrt{\text{Baller}} \\
\hline
\end{array}
\]

\[
\begin{array}{c}
\text{Baller} \\
\hline
\end{array}
\]

(12) (13)
Spellout of PD \{e\}-plurals

<table>
<thead>
<tr>
<th>S-span</th>
<th>L-span (exponents)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>Katz ↔</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#</td>
</tr>
<tr>
<td></td>
<td>√Katz</td>
</tr>
<tr>
<td></td>
<td>-e ↔</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F₂</td>
</tr>
<tr>
<td></td>
<td>F₁</td>
</tr>
</tbody>
</table>

(14)

(15)

\[
\begin{array}{c}
F₂ \\
\hline
\{e\} \\
\hline
F₁ \\
\hline
\hline
Katz \}
\end{array}
\]

\[
\begin{array}{c}
\hline
\# \\
\hline
√Katz \\
\hline
Katz \\
\hline
\hline
\hline
\end{array}
\]

\[
\begin{array}{c}
\hline
\sqrt{Katz} \\
\hline
Katz \\
\hline
\hline
\end{array}
\]
Spellout of $\{r\}$-plurals

<table>
<thead>
<tr>
<th>S-span</th>
<th>L-span (exponents)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td></td>
</tr>
</tbody>
</table>
| $\begin{array}{c}
F_2 \\
F_1
\end{array}$ | $\begin{array}{c}
Haus \\
\sqrt{\text{Haus}}
\end{array}$ |
| $\begin{array}{c}
\# \\
\sqrt{}
\end{array}$ | $\begin{array}{c}
\text{Heis} \\
F_1
\end{array}$ |
| $\begin{array}{c}
\# \\
\sqrt{\text{Haus}}
\end{array}$ | $\begin{array}{c}
\text{Hemm} \\
F_1
\end{array}$ |
| $\begin{array}{c}
\# \\
\sqrt{\text{Hemm}}
\end{array}$ | $\begin{array}{c}
- \text{r} \\
F_2
\end{array}$ |
L-spans

(16)
\[
\begin{array}{c}
F_2 \\
\{r\} \\
F_1 \\
\\
\sqrt{\text{Haus}} \\
\text{Heis}
\end{array}
\]

(17)
\[
\begin{array}{c}
F_2 \\
\{r\} \\
F_1 \\
\\
\sqrt{\text{Hemm}} \\
\text{Hemm}
\end{array}
\]

(18)
\[
\begin{array}{c}
\sqrt{\text{Haus}} \\
\text{Haus}
\end{array}
\]

(19)
\[
\begin{array}{c}
\sqrt{\text{Hemm}} \\
\text{Hemm}
\end{array}
\]
L-spans associated with PD $\sqrt{\text{root}}$ and plural exponents

<table>
<thead>
<tr>
<th>Singular L-span</th>
<th>Plural L-span</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{\text{root}}$</td>
<td>$\sqrt{\text{root}}$</td>
</tr>
<tr>
<td>Baller</td>
<td>s</td>
</tr>
<tr>
<td>Frog</td>
<td>s</td>
</tr>
<tr>
<td>Hiwwl</td>
<td>e</td>
</tr>
<tr>
<td>Katz</td>
<td>e</td>
</tr>
<tr>
<td>Haus</td>
<td>r</td>
</tr>
<tr>
<td>Heis</td>
<td></td>
</tr>
<tr>
<td>Hemm</td>
<td>r</td>
</tr>
<tr>
<td>Frein</td>
<td></td>
</tr>
<tr>
<td>Hand</td>
<td>Hend</td>
</tr>
</tbody>
</table>
(20) **English distributed plural S-span**

![Diagram](image)

<table>
<thead>
<tr>
<th>Singular L-span</th>
<th>Plural L-span</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{\text{root}}$</td>
<td>$\sqrt{\text{root}}$ # F_1</td>
</tr>
<tr>
<td>Car</td>
<td>s</td>
</tr>
<tr>
<td>Ox</td>
<td>en</td>
</tr>
<tr>
<td>Child</td>
<td>Childr</td>
</tr>
<tr>
<td>Moose</td>
<td></td>
</tr>
<tr>
<td>Mouse</td>
<td>Mice</td>
</tr>
</tbody>
</table>

Important point: English does not contain F_2 in its S-span, the $\{s\}$ exponent will *for PD-English bilinguals*
This analysis captures two important aspects regarding an integrated English-PD grammar:

- **Aspect 1:** Due to its smaller S-span, English only requires the lexicalization of the \{#F_1\} span (e.g., oxen)
 - This means that \{en\} can remain distinct from the PD forms through the specification of F_1
 - There are no PD exponents with an L-span composed of only F_1 - while mapping to English √roots that contain # in their L-spans

- **Aspect 2:** Like PD, English s-plurals are stored as ‘bare’ √roots
 - Wrt to s-plurals both English & PD lexicalize √roots with the smallest L-spans (along with the fact that English √roots occur with the s-exponent in PD) - supports the assumption that \{s\} is a ‘shared exponent’
 - Although the English S-span does not project a second abstract feature (F_2) like PD, the Superset Principle renders \{s\} the best match for simple English √roots
Q: Why does the s-exponent appear on the overwhelming majority of English-based loanwords in PD lexicalized as {s}?
- Additional knowledge of English will not technically *add* features to the PD plural S-spans
- L-spans are stored in the mental lexicon (since they don’t inherit any sort of strange leftover F-features)
- There is no evidence that English √roots will contain the requisite F-feature(s), and as a result, e-plurals should have larger √roots-spans than PD s-plurals
- *(span) size matters*: So long as speakers generate smaller S-spans while speaking English, the competing PD exponents won’t be viable for insertion (Superset Principle)
 - **Testable prediction re: mixing**: Plural marking, i.e., PD suffixes on English √roots, will occur through the generation of the PD S-span in ‘English mode’ and be constrained to {e} for English en-plurals and {r} for English r-plurals
Q: What might this approach have to offer?

- The size of the $\sqrt{\text{roots}}$ - with their accompanying L-span - and the distributed nature of PLURAL offers a working explanation to the limited nature of inflectional borrowing.

- Wrt to PD-English bilinguals, if English has smaller plural S-spans than the recipient language (PD), the exponent associated with the largest L-span in the recipient language will lexicalize as PLURAL due to the distributed nature of the lexicon.

- ‘borrowed’ $\sqrt{\text{roots}}$ - with their allomorphic variation (F-features in their L-spans) - accompany them.

- If this proposal is on the right track, it adds further support to the Superset Principle.
Conclusions

Return to original RQs:

- **RQ₁**: How does this general restriction inform us about the underlying nature of an ‘integrated’ bi/multilingual mental lexicon (Kroll & Dussias, 2014; Putnam, Carlson, & Reitter, 2018; López, 2020)?
 - The (bilingual) lexicon/grammar is distributed; lexicalization is conditioned by syntax

- **RQ₂**: Are there any representational reasons why the borrowing of inflectional morphology is so difficult in contact situations?
 - The matching algorithm of (stored) L-spans to S-spans mediated by the Superset Principle makes testable predictions

- **RQ₃**: What sorts of insights might the contact situation surrounding Pennsylvania Dutch (PD) offer us in better understanding the limits of borrowing of inflectional morphology?
 - Active borrowings continue; we also need to test plural allomorphy in connection with gender, case, diminutive suffixes, etc.
Thanks!